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1. Climate Model, Radiative Forcing and Ensemble Generation 15 

The UVic Earth System Climate Model (version 2.8 with parameters as described in detail in 16 

[Schmittner et al., 2008]) includes a three-dimensional ocean general circulation model, a 17 

dynamic-thermodynamic sea ice model, a simple one-layer energy-moisture balance model of 18 

the atmosphere as well as land-surface and dynamic terrestrial vegetation components at a 19 

resolution of 1.8°×3.6° with 19 vertical levels in the ocean. Since vegetation is allowed to 20 
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respond dynamically to changes in climate and CO2 concentrations, it is treated as an internal 21 

interactive feedback, rather than as part of the prescribed forcing as in previous studies without 22 

interactive vegetation.  23 

In order to generate model versions with different climate sensitivities we have changed a 24 

parameter in the formulation of outgoing planetary longwave radiation at the top-of-the-25 

atmosphere QPLW in the atmospheric Energy-Moisture Balance Model (EMBM) of the UVic 26 

model version 2.8 [Weaver et al., 2001; Schmittner et al., 2008]. The UVic model uses a 27 

polynomial formulation by Thompson and Warren (1982): 28 

 29 

QPLW = c00 + c01r + c02r2 +(c10 + c11r + c12r2)Ta+(c20 + c21r + c22r2)Ta
2+(c30 + c31r + c32r2)Ta

3 30 

(S1) 31 

that depends on surface air temperature Ta and surface relative humidity r. In order to keep 32 

global preindustrial surface air temperature constant we varied the slope of this curve with 33 

respect to Ta by changing c10 and c00 simultaneously (Figure S1). Equation S1 implicitly includes 34 

the effects of the water vapor and lapse-rate feedbacks as well as cloud feedbacks on infrared 35 

radiation. The larger the slope c10 the larger the response of QPLW will be to a given change in 36 

temperature. Since this is a negative feedback, the climate sensitivity is smaller the larger the 37 

slope c10. We have created an ensemble of 26 different model versions by varying c10 from 1.7 to 38 

18.1 Wm-2K-1. The standard model uses c10 = 2.6 Wm-2K-1. Present-day observations do not 39 

provide firm constraints on these parameters as illustrated in Figure S1, although very small and 40 

very large values can probably be excluded. However, we have retained models with extreme 41 

values in order to gauge the constraints imposed by LGM data only, without considering 42 
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constraints from present day observations.  43 

We carried out three types of simulations with each ensemble member: a pre-industrial 44 

control run, a double CO2 run (to determine ECS2xC) and four LGM experiments. The LGM 45 

experiments consider uncertainty in dust forcing, wind stress and initial conditions (different 46 

initial states of the Atlantic Meridional Overturning Circulation AMOC). All simulations were 47 

integrated for 2000 years after which surface climate is close to equilibrium. (E.g. global mean 48 

surface air temperature changes by 2.2×10-4 K/yr for ECS2xC=5.6). The average of the last 500 49 

years were used for the analysis.  50 

Our standard model simulations of the Last Glacial Maximum (LGM) include radiative 51 

forcing from larger continental ice sheets (ΔFsfc = –2.2 W/m2) [Peltier, 2004], lower greenhouse 52 

gas concentrations (CO2, CH4, N2O) (ΔFGHG = ΔFCO2 + ΔFCH4 + ΔFN2O  = –2.8 W/m2) [Flückiger 53 

et al., 1999; Ramaswamy et al., 2001; EPICA et al., 2004], changes in the seasonal distribution 54 

of insolation (annually averaged ΔFins = 0 W/m2), and higher atmospheric dust levels (Figure S2; 55 

ΔFdust = –0.9 W/m2) [Mahowald et al., 2006b]. The total radiative forcing in the standard model 56 

ΔFLGM = ΔFsfc + ΔFGHG + ΔFdust  = –5.9 W/m2 is similar to previous estimates [Hansen et al., 57 

1984], but less than another recent study [Köhler et al., 2010] who estimated ΔFLGM = –9.5 58 

W/m2, partly because of higher assumed dust ΔFdust = –1.9 W/m2 and ice sheet ΔFsfc = –3.2 59 

W/m2 forcing by Köhler et al. and because they prescribe surface albedo changed from changes 60 

in vegetation ΔFveg = –1.1 W/m2, which is considered an internal feedback in our study. 61 

Our ensemble explores uncertainties in dust forcing by including simulations without 62 

dust, but it does not explore uncertainties in surface or greenhouse gas forcings. 63 
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Ice sheets are prescribed as fixed differences in the surface elevation in the model (not 64 

interactive). This affects surface air temperatures according to a fixed lapse rate (5K/km), which 65 

leads to a changed albedo because of accumulating snow cover. (Albedo is not prescribed.) 66 

Forcing due to surface albedo changes associated with the increased land area covered with ice 67 

sheets was estimated by performing an additional simulation with pre-industrial boundary 68 

conditions but added LGM ice sheets. The difference in shortwave fluxes at the top of the 69 

atmosphere between this experiment and the pre-industrial control run gives the forcing due to 70 

surface albedo changes resulting in the value of ΔFsfc = –2.2 W/m2 reported above. Northern 71 

hemisphere ice sheets contribute –1.8 W/m2, southern hemisphere ice sheets –0.3 W/m2 and 72 

changes in non-ice sheet covered areas –0.1 W/m2. This estimate, which includes the effects of 73 

changes in snow cover, is within the range (–1.9 to –2.9 W/m2) of previous studies [Hewitt and 74 

Mitchell, 1997; Broccoli, 2000; Taylor et al., 2007] but smaller than the –3.2 W/m2 by Köhler et 75 

al. [2010]. We do not consider the effect of surface albedo changes caused by differences in 76 

land-sea distribution away from ice sheets associated with exposed continental shelves. This 77 

effect has been estimated to be small (–0.4 W/m2) [Broccoli, 2000]. Including this forcing, which 78 

is 7% of the total, could decrease our estimate of ECS2xC slightly (by up to 0.2 K). 79 

For dust we use two-dimensional maps (Figure S2) of longwave and shortwave radiative 80 

forcing for the LGM and pre-industrial climate as simulated by the interactive dust model of 81 

[Mahowald et al., 2006b], which uses the Community Atmospheric Model, as described in 82 

[Mahowald et al., 2006a].  The dust model results were tuned for the LGM to best match 83 

available deposition observations, and matched these observations for the current climate, 84 

especially in the annual mean. The shortwave and longwave impacts of desert dust were 85 

included, as described in [Yoshioka et al., 2007].  We assumed the best available optical values 86 
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for the desert dust particles [Yoshioka et al., 2007], but these are uncertain [Sokolik and Toon, 87 

1999], and there are large differences in the results if different optical values are used [Perlwitz 88 

et al., 2001].  89 

 90 

2. Temperature Reconstructions  91 

We have combined recent syntheses of global sea surface temperatures (SSTs) from the 92 

Multiproxy Approach for the Reconstruction of the Glacial Ocean (MARGO) project [MARGO 93 

et al., 2009] and surface air temperatures (SAT) over land based on pollen distributions [Bartlein 94 

et al., 2011], with additional data (see subsection 2.1 below) from ice sheets, land and ocean 95 

[Shakun et al., 2011]. The combined temperature reconstructions are shown in Figure 1. The 96 

published error estimates are shown in Figure S3.  97 

2.1.  Shakun et al. (submitted) LGM temperature dataset 98 

 This dataset consists of 54 proxy temperature records spanning some or the entire LGM 99 

interval (19-23 ka) that are not included in the MARGO (2009) or Bartlein et al. (2011) datasets. 100 

The records are based on various proxies from ocean, land, and ice, including alkenones (n=21), 101 

foraminiferal Mg/Ca (n=18), foraminiferal assemblages (n=4), TEX86 (n=4), MBT/CBT (n=2), 102 

and ice cores (n=5). LGM temperature anomalies and errors were calculated following the 103 

methods used by MARGO (2009). One difference, however, is that many of these records (n=34) 104 

are high-resolution time series that extend to the late Holocene. Therefore, LGM anomalies for 105 

these records were calculated as the difference between the 19-23 ka and 0-2 ka means. This 106 

approach only assumes that the proxies accurately record the magnitude of LGM-Late Holocene 107 

temperature change, rather than absolute LGM temperatures. For the remaining 20 records, LGM 108 
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anomalies were calculated from modern mean annual temperature at 10 m water depth using the 109 

World Ocean Atlas 98 dataset, as done by MARGO (2009). Twenty-six of the ocean records 110 

come from locations where the MARGO 5°x5° LGM temperature anomaly grid already contains 111 

values. Therefore, these MARGO grid points were updated with these new records, and errors 112 

were propagated following MARGO’s (2009) methods. The dataset is available at 113 

http://mgg.coas.oregonstate.edu/~andreas/data/schmittner11sci/. 114 

2.2  Mg/Ca salinity bias 115 

 Recent research suggests that foraminiferal Mg/Ca may be sensitive to salinity [Mathien-116 

Blard and Bassinot, 2009; Arbuszewski et al., 2010]. If so, correcting Mg/Ca records for the ~1 117 

unit increase in global ocean salinity at the LGM would decrease reconstructed SSTs. The 118 

magnitude of this temperature correction would vary with the absolute value of the salinity and 119 

SST at the core site due to the nonlinear relationships between salinity and “excess Mg/Ca”, and 120 

Mg/Ca and SST. For example, [Mathien-Blard and Bassinot, 2009] estimate an additional 1°C 121 

LGM cooling for a western tropical Pacific record, while [Arbuszewski et al., 2010] calculate an 122 

additional 1.8°C cooling for a Caribbean record. Since none of the Mg/Ca records used in our 123 

study have been corrected for this salinity effect, taking it into account would increase 124 

reconstructed LGM cooling and thus our estimate of climate sensitivity. Nonetheless, we 125 

estimate that the impact on our results would be minor. In particular, Mg/Ca accounts for only 126 

9% (66 of 742) of the individual SST reconstructions used here, and only 5% of the global 127 

(ocean and land) temperature reconstructions. Moreover, it is unclear now many of these Mg/Ca 128 

reconstructions were affected by large salinity changes that would introduce a bias since it only 129 

occurs at high salinities (>35) [Arbuszewski et al., 2010]. Assuming a typical temperature 130 

correction of -1°C for all Mg/Ca records due to this salinity effect and averaging that through to 131 
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the LGM global cooling estimate would increase it on the order of ~0.05°C (i.e., 5% of 1°C). 132 

This is well within the error of our 3.6 ± 1°C LGM cooling estimate and would have little effect 133 

on the likely range of climate sensitivity we report. 134 

 135 

The reconstructed LGM-modern temperature anomalies are plotted against the 136 

reconstruction errors in Figure S4.  Land points show greater LGM cooling than ocean points.  137 

The SST proxies, however, generally have greater reconstruction errors than the land proxies. 138 

 139 

3. Snowball Earth 140 

Figure S5 shows three snapshots in the transition to a completely ice covered Earth for a high 141 

climate sensitivity model (ECS2xC = 8.2 K). Shortly after model year 460, that is 460 years after 142 

the switch to LGM boundary conditions, Earth is completely ice covered in this simulation. 143 

 144 

4. Simulated Ocean Circulation 145 

For LGM boundary conditions the standard model exhibits a threshold around ECS2xC=2.7 at 146 

which the Meridional Overturning Circulation (MOC) of the ocean changes from a mode with 147 

deep water formation in the North Atlantic (ECS2xC<2.7) to a mode with deep water formation in 148 

the North Pacific (ECS2xC>2.7) as illustrated in Figure S6. Note that only an index of the Atlantic 149 

MOC is shown in Figure S6, but inspection of the full streamfunction shows that the mode with 150 

zero AMOC exhibits sinking in the North Pacific down to about 2000 m depth (not shown) due 151 

to the Atlantic-Pacific seesaw mechanism [Saenko et al., 2004], whereas the mode with active 152 

AMOC has no deep water formation in the North Pacific. The mode with deep water formation 153 
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in the North Atlantic is consistent with the observed modern circulation pattern whereas the 154 

mode with sinking in the North Pacific is not. Paleoclimate data show that deep water formation 155 

in the North Atlantic was active during the LGM (albeit perhaps weaker and/or shallower than at 156 

present day) [Curry and Oppo, 2005] contrary to the standard model results for high climate 157 

sensitivities. Sensitivity experiments with added wind stress anomalies from a coupled ocean-158 

atmosphere model (GENMOM) [Alder et al., 2011] result in a stronger AMOC than that of the 159 

control simulation and do not exhibit the threshold seen in the model without wind stress 160 

anomalies. Results from these experiments show that the climate sensitivity estimates do not 161 

depend much on the state of the MOC (subsection 7.3). 162 

 163 

5. Data-Model Comparisons and Residual Analysis  164 

Figure S7 shows the zonally averaged temperature changes from the best fitting model 165 

(ECS2xC=2.4 K), Figure S8 shows the spatial distribution of the residuals (model minus 166 

reconstructions). The correlation coefficient for the 2D temperature changes is 0.53 and the root 167 

mean squared error is 2.3 K.  168 

 169 

Histograms of reconstructed temperature anomalies are plotted against the modeled 170 

temperature anomalies for several different climate sensitivites in Figure S9.  The reconstructed 171 

SSTs are most compatible with a model ECS2xC near 2 K, whereas the reconstructed land SATs 172 

are most compatible with a model ECS2xC near 3 or 4 K, when comparing peaks of the 173 

reconstructed and modeled anomaly distributions.  When land and ocean anomalies are 174 

considered together, an ECS2xC near 2 K is favored when comparing peaks, similar to the SST 175 
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comparison, likely because the ocean data are more abundant than the land data. 176 

 177 

The data-model residual temperature anomalies are plotted in Figure S10 for ECS2xC = 178 

2.2 K.  The residuals show some evidence of non-normality.  However, the land and ocean 179 

residuals individually appear more normal, suggesting that the combined residuals are a mixture 180 

of two normal distributions.  This motivates a statistical treatment of the data as normally 181 

distributed with different covariance structures over land and ocean.  The land residuals show 182 

greater variability than the ocean residuals, as might be expected.  Neither the land nor ocean 183 

residuals display a strong skewness, nor particularly heavy tails.  While the ocean residuals are 184 

centered at zero the land residuals are not, indicating that the land data do not favor this ECS2xC 185 

value. 186 

 187 

To further explore the differences between the ECS2xC values implied by the land and 188 

ocean data, Figure S11 plots the mean and 90% interval of the reconstructed temperature 189 

anomalies against the mean and 90% interval of the modeled temperature anomalies as a 190 

function of model ECS2xC.  The range of modeled land SAT anomalies lies within the range of 191 

reconstructed SAT anomalies for ECS2xC below ~5 K, whereas the range of modeled ocean SST 192 

anomalies lies within the range of reconstructed SST anomalies for ECS2xC below ~3 K.  This is 193 

compatible with the Figure S9, which shows that the ocean SST data favor lower ECS2xC values 194 

than the land SAT data.  195 

 196 

The modeled ocean anomalies also show an abrupt decrease in the lower temperature 197 
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range near ECS2xC = 2.7 K, where the AMOC collapses (Fig. S6). Figure S12 shows a data 198 

model comparison with the North Atlantic points excluded. (The excluded region is defined 199 

empirically to be those Northern Hemisphere ocean grid cells for which the modeled temperature 200 

anomaly in the ECS2xC = 2.83 K run is more than 1 K colder than the anomalies in the ECS2xC = 201 

2.51 K run.  This includes most of the North Atlantic and Mediterranean Sea, and no other grid 202 

cells.)  The data-model comparison suggests that SST data outside of the North Atlantic region 203 

are compatible with a larger range of climate sensitivities (below ECS2xC = 4 K) than are the SST 204 

data with the AMOC region included (as discussed above). 205 

 206 

6. Statistical Analysis 207 

6.1  Regridding and Sea Level Correction 208 

For the purpose of data-model comparison the model output is mapped from the UVic grid 209 

(1.8×3.6°) onto the grids of the temperature reconstructions (5×5° grid for the SSTs and Shakun 210 

et al. data and 2×2° grid for the pollen data).  A correction of 0.32 K is added to the modeled 211 

SST everywhere in order to account for the 120 m lower sea level at the LGM. The value of 212 

ΔSSTSL = 0.32 K is determined from an additional model simulation in which sea level is 213 

explicitly lowered and a constant global mean lapse rate of 5 K km-1
 is used to calculate surface 214 

air temperatures. The analysis uses modeled SSTs over the oceans and SATs over land. 215 

 216 

6.2  Model Emulation 217 

In order to predict the model output at arbitrary climate sensitivities, the model output at each 218 

grid cell is emulated by linear interpolation of the model output over the ECS2xC values in the 219 
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ensemble.  A total of n=435 independent linear emulators are constructed, one for each grid cell 220 

containing data.  In addition to a linear interpolator, several other types of statistical emulators 221 

were also evaluated, including independent cubic spline interpolators, independent thin-plate 222 

spline interpolators, and a Gaussian process outer product emulator with a linear mean function 223 

and an exponential covariance function separable in latitude and longitude.  None produce 224 

obviously better emulation than the simple linear emulator, and most suffer from some 225 

‘overshoot’ problems where the emulator failed to capture rapid changes in output near ECS2xC = 226 

2.7 K, at which the AMOC collapses (Figure S6).  A linear interpolator emulator has the 227 

disadvantage of not being able to estimate its own interpolation uncertainty (‘code uncertainty’), 228 

but the code uncertainty estimates from the Gaussian process emulator were much smaller than 229 

the temperature reconstruction and UVic model errors, and are presumably negligible in the 230 

inference. 231 

 232 

6.3  Statistical Model 233 

For statistical analysis it is assumed that the temperature anomaly reconstructions are normally 234 

distributed about the (emulated) modeled anomalies for some “best” value of ECS2xC, possibly 235 

with some bias (b).  That is, 236 

 237 

     Tobs ~ N(µ=Tmod(ECS2xC) + b, Σ) ,    (S2) 238 

 239 

or, equivalently, 240 
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 241 

    Tobs = Tmod(ECS2xC) + b + ε, ε ~ N(µ=0, Σ)   (S3) 242 

 243 

where Tobs, Tmod, b, and ε are vectors of length n, and Σ is an n×n covariance matrix describing 244 

the model and observation errors.  The inference problem is to compute a probability density 245 

function for ECS2xC conditional on the observations, p(ECS2xC |Tobs). 246 

 247 

To account for the possibility of different biases and errors over land and ocean (see Residual 248 

Analysis), the vectors and matrices are decomposed into separate land and ocean blocks.  The 249 

bias is then b = [bL bO] where bL and bO are constant vectors of length nL = 113 and nO = 322.  250 

(Here and elsewhere the same symbol is used to refer to both a scalar and a constant vector equal 251 

elementwise to that scalar.)  Conceptually a bias can be attributed to systematic errors in the 252 

modeled temperatures, the proxy temperature reconstructions, or both.  While the UVic model 253 

does have spatial biases in surface temperature, the bias in the LGM-modern temperature 254 

anomaly should be reduced if the model makes similar absolute errors in the LGM and modern 255 

periods. The reconstructions may contain biases e.g. due to age model errors. Since the LGM 256 

corresponds to a temperature minimum in time in most regions age model errors can lead to 257 

systematically warmer reconstructions. In the default analysis the bias is assumed to be zero, 258 

because it is highly confounded with climate sensitivity, the quantity of interest.  Arbitrarily 259 

large climate sensitivities (cold LGM temperature anomalies) can be made compatible with the 260 

data by introducing a sufficiently large positive model bias, and similarly for arbitrarily small 261 

climate sensitivities.  We later consider sensitivity tests in which small nonzero biases over land 262 
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or ocean are assumed. 263 

 264 

The error covariance matrix is decomposed into the sum of three different sources of error:  265 

observation (proxy) error, spatially correlated error, and an additional small-scale, spatially 266 

independent source of error referred to in geostatistics as a ‘nugget’: 267 

 268 

     Σ  = Σobs + Σspatial + Σnugget .     (S4) 269 

 270 

The proxy reconstruction errors form a vector σobs.  Assuming the reconstruction errors are 271 

spatially independent, the corresponding covariance matrix is diagonal containing the error 272 

variances, Σobs = diag(σobs
2).  The reconstruction errors are likely not completely spatially 273 

independent, but the proxy error estimates used in this analysis do not include estimates of 274 

spatial correlation.  With sufficient data and a perfect model it is possible to estimate the spatial 275 

correlation from the data-model residuals.  However, the model is not perfect and its errors are 276 

also spatially correlated.  Without knowing the reconstruction or model error a priori, there is 277 

confounding between the two sources of error and their spatial structures cannot be estimated 278 

independently. 279 

 280 

The other two error terms (spatial and nugget) are introduced to account for this confounding 281 

between observation and model error.  The spatial error term represents all the spatial 282 

dependence in the total residual errors, including both reconstruction and model spatial error.  283 
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The spatial correlation function is assumed to be exponentially decaying in distance, 284 

 285 

     cor(xi, xj) = exp[-d(xi, xj)/λ] ,     (S5) 286 

 287 

where the function d(⋅,⋅) gives the geodesic distance between two points on the Earth’s surface, 288 

and λ = 2000 km is a spatial correlation e-folding length scale. Future work could make use of 289 

more sophisticated (albeit computationally expensive) approaches for specifying covariance 290 

functions on the sphere [Jun and Stein, 2007]. 291 

 292 

This correlation function is homogeneous and isotropic, assigning the same correlation length 293 

scale over land and ocean, and in zonal and meridional directions.  These assumptions are only 294 

approximately correct; for example, one might expect the correlation length to be longer over 295 

ocean than land, or longer within a latitudinal zone than along a longitudinal meridian.  The latter 296 

expectation could be addressed with a correlation function that is separable in latitude and 297 

longitude, with separate correlation lengths for each, but it its unclear how then to properly 298 

account for geodesic distances on the sphere while maintaining zonal/meridional anisotropy.  In 299 

general, it seems difficult to significantly improve upon the assumed correlation function without 300 

introducing a highly complex non-separable correlation function, while simultaneously 301 

guaranteeing both its well-posed form (positive definite on the sphere) and estimating its 302 

structure from limited (< 500) data points. 303 

 304 
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The spatial error magnitudes are assumed to differ over land and ocean, σL and σO.  Together 305 

with the correlation function they give a block spatial covariance matrix [Oliver, 2003], 306 

 307 

      ,    (S6) 308 

 309 

where cLL, cOO, cLO matrix blocks give the exponential correlations between land points and other 310 

land points, ocean points and ocean points, and land and ocean points, respectively. 311 

 312 

The third error term, the nugget, is intended to account for spatially independent errors that are 313 

not explicitly accounted for in the reconstruction error Σobs.  These could represent either 314 

additional reconstruction error in case the calculated errors are overconfident, or sub-grid scale 315 

variability in model error, or some combination of both.  The nugget covariance matrix is 316 

diagonal since it is spatially independent, but different nugget variances ηL
2 and ηO

2 over land 317 

and ocean. It is given by Σnugget = diag([ηL
2

 ηO
2]), i.e. with two diagonal blocks that are multiples 318 

(ηL
2 and ηO

2) of the identity matrix. 319 

 320 

6.4 Bayesian Inference 321 

The Bayesian procedure for inferring the joint probability distribution of a vector of unknown 322 

parameters θ is to construct the posterior probability distribution 323 
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 324 

     

� 

p(θ |Tobs)∝ L(Tobs |θ )p(θ ) ,     (S7) 325 

 326 

where L(Tobs|θ) is the likelihood function giving the probability of observing the data assuming 327 

known values of the parameters, and p(θ) is the prior probability of the parameters.  In this case 328 

the unknown parameters are taken to be the climate sensitivity as well as the land and ocean 329 

spatial errors, θ = (ECS2xC, σL, σO).  The correlation length λ, nugget errors ηL and ηO, and 330 

biases bI and bO are also unknown, but we choose to fix them at assumed values rather than infer 331 

them. 332 

 333 

The biases are assumed to be zero for reasons discussed above (confounding with ECS2xC).  The 334 

correlation length and nuggets are fixed to constant values to avoid confounding with σL and σO. 335 

In general, it is difficult to simultaneously estimate the spatial variance, nugget variance, and 336 

correlation length of a Gaussian process from limited data.  The assumed values are λ = 2000 337 

km, ηL = 2.5 K, and ηO = 0.5 K, chosen from a combination of comparative residual analysis 338 

over land and ocean, exploratory variogram analysis, inspection of the likelihood surface at 339 

different fixed values, and prior expectations about the range of correlation and the relative 340 

amounts of temperature variability between land and ocean.  We consider later the effects of 341 

varying these assumptions. 342 

 343 

The normal likelihood function is given by a multivariate normal distribution, 344 
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 345 

   L(Tobs | ECS,σ L ,σO ) =
1

(2π )n detΣ
exp − 1

2
rTΣ−1r⎡

⎣⎢
⎤
⎦⎥

,   (S8) 346 

 347 

     r = Tobs – [Tmod(ECS2xC) + b] , 348 

 349 

where r is the bias-corrected data-model residual vector. 350 

 351 

The prior probabilities of the uncertain parameters are assumed independent of each other.  The 352 

prior probabilities on the land and ocean spatial errors are assumed to be Lognormal(log(2.5), 353 

log(2)/2), i.e., their logarithm is normal with mean log(2.5) and standard deviation log(2)/2, 354 

intended to reflect a prior error estimate of 2.5 K uncertain by a factor of 2 (from 1.25 to 5 K).  355 

For climate sensitivity, a bounded uniform prior over the range of modeled ECS2xC values (0.26 356 

to 8.37 K) is assumed for simplicity.  While this prior has proven controversial for estimating 357 

climate sensitivity from limited instrumental data [e.g. Frame et al., 2005; Annan and 358 

Hargreaves, 2011], the inference is presumably less sensitive to the prior in a paleo context with 359 

data collected over longer time scales.  Furthermore, we consider an alternate prior that is 360 

bounded uniform on the climate feedback (∝ 1/ECS2xC).  The resulting inference for ECS2xC (see 361 

Sensitivity Analysis) does not strongly differ between the two priors, and other statistical 362 

assumptions have more influence on the inference.  Presumably a prior that uses other 363 

constraints (such as modern instrumental data) would give an inference for ECS2xC which lies 364 

somewhere between the inferences from the uniform ECS2xC and uniform feedback priors, which 365 
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have prior means — 4.3 and 1.6 K over these bounds, respectively, assuming a 3.7 W m-2 forcing 366 

for a CO2 doubling — that are on the upper and lower ends of the ECS2xC ranges found in other 367 

studies [Knutti and Hegerl, 2008]. 368 

 369 

6.5 Monte Carlo Sampling 370 

Given the posterior probability distribution for the uncertain parameters given by the above 371 

likelihood function and priors, the Bayesian inference proceeds by Markov chain Monte Carlo 372 

(MCMC) sampling using the Metropolis algorithm.  The Metropolis algorithm generates a 373 

correlated random walk through parameter space designed so that points in parameter space are 374 

visited (sampled) in direct proportion to their calculated posterior probability. 375 

 376 

The resulting set of samples from the posterior distribution, the Markov chain, can be used to 377 

approximate any quantity of interest (means, quantiles, distributions) by sample statistics 378 

(sample means or quantiles, histograms or kernel density estimates).  A particular advantage of 379 

MCMC method is the ease with which they can compute the marginal distributions of individual 380 

parameters from the joint posterior of all uncertain parameters.  Theoretically, the marginal 381 

distribution of a parameter is obtained by averaging over the uncertainty in all other (‘nuisance’) 382 

parameters, e.g., for climate sensitivity, 383 

 384 

    p(ECS |Tobs ) = p(ECS,σ L ,σO |Tobs )dσ L dσO∫∫ .  (S9) 385 

With MCMC sampling the desired marginal distribution can be obtained by simply constructing 386 
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a histogram or density estimate of only the ECS2xC samples in the chain, ‘forgetting’ about the 387 

samples of the other parameters. 388 

 389 

A two-stage adaptive Metropolis algorithm is employed in all analyses.  First a preliminary chain 390 

of 20,000 samples is constructed using informed guesses for the starting point in the chain and 391 

for the step sizes proposed for the random walk.  Then a second chain of 100,000 samples is 392 

constructed, starting at the posterior mean of the first chain, and with a multivariate normal 393 

proposal distribution approximately proportional to the sample covariance of the first chain 394 

[Roberts and Rosenthal, 2009].  This allows the Metropolis algorithm to more efficiently 395 

propose moves that are adapted in magnitude and direction to the posterior distribution 396 

approximated by the first, possibly poorly converged chain.  Only the second, adapted chain is 397 

used in further analysis. 398 

 399 

The resulting chains appear well converged in graphical diagnostics, have reasonable acceptance 400 

rates for proposed moves in the random walk (41% for the default analysis), and have reasonable 401 

effective sample sizes (between 6000 and 7000 for the three parameters estimated in the default 402 

analysis). 403 

 404 

6.6 Joint Posterior 405 

The posterior inferred from the proxy data is given in Figure S13.  The marginal distribution for 406 

ECS2xC is peaked near the posterior mean of 2.2 K, and is multimodal.  This multimodality could 407 

be partly due to the non-smooth linear interpolation of the model emulator, but also may reflect 408 
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real physical behavior of the model (for example, the collapse of the AMOC near ECS2xC = 2.7 409 

K).  The estimated spatial errors are around 3.5 K over land and 1.5 K over ocean.  The joint 410 

posterior shows little correlation (confounding) between ECS2xC and the two spatial error 411 

parameters. 412 

 413 

7. Sensitivity Tests 414 

A number of experiments are performed to examine the sensitivity of the inference to statistical 415 

and physical assumptions.  These tests, which are summarized graphically in Figures S14 and 416 

S14, are described below.   In addition to the tension between land and ocean based estimates of 417 

ECS2xC, the inferred ECS2xC distribution has some sensitivity to assumptions about bias, nugget 418 

variance, and correlation length, as well as dust forcing and sea level SST corrections.  Wind 419 

stress forcing narrows the uncertainty range but does not significantly change the mean estimate. 420 

 421 

7.1  Land/Ocean 422 

The analysis is applied to only the land or only the ocean data.  The ocean-only inference for 423 

ECS2xC is similar to the combined inference, with a range of about 1.5 to 3 K, indicating that the 424 

ocean data dominate the land data in the inference.  The land-only inference supports 425 

significantly higher climate sensitivities, roughly similar to the 2 to 4.5 K IPCC range. 426 

 427 

7.2 Dust Forcing 428 

In order to account for the uncertainty in dust forcing we have estimated the surface temperature 429 
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response to dust forcing using a subset of 11 models with different ECS2xC and performed an 430 

additional LGM experiment for each of those models without dust radiative forcing. Assuming a 431 

linear response to dust forcing, we interpolated between these simulations to fill in the additional 432 

ECS2xC values for which no experiments had been performed (0×Dust). Then we extrapolated 433 

(doubled) the surface temperature response to estimate two times larger dust forcing (2×Dust). 434 

The results from shown that increasing the dust forcing implies a lower ECS2xC (below 2 K) 435 

while eliminating the dust forcing implies a higher ECS2xC (near 3 K). 436 

 437 

7.3  Wind Stress Forcing 438 

The UVic model uses prescribed wind stress at the sea surface in order to force the ocean and sea 439 

ice model components. In the standard model we use present day wind stress. In order to account 440 

for changes in winds at the LGM we applied an anomaly (LGM minus LH) calculated from the 441 

coupled ocean-atmosphere general circulation model GENMOM [Alder et al., 2011]. Monthly 442 

mean anomalies were added to the seasonal climatology of the wind stress fields.  443 

 In both cases the inference with wind stress corrections favors ECS2xC near 2 K, as in the 444 

default analysis, but with reduced uncertainty. The AMOC is significantly stronger in models 445 

with GENMOM wind stress forcing (Figure S6) in the LGM run than in the LH run, a result that 446 

may be inconsistent with deep ocean carbon isotope paleo-data [Curry and Oppo, 2005], 447 

indicating possible structural model uncertainty. 448 
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 449 

7.4  Sea Level SST Correction 450 

The correction of ΔSSTSL = 0.32 K added to the simulated SST in order to account for the lower 451 

sea level during the LGM was estimated by one additional model simulation as described in 452 

section 6. The value of 0.32 K is only half of what one would expect from a simple application 453 

of a constant lapse rate of 6 K/km. Uncertain model parameters, such as the application of a 454 

reduction of the lapse rate in the calculation of outgoing longwave radiation over topography 455 

(this parameter is called rfactor in the UVic model version 2.8 source code) may be the reason 456 

for this deviation and suggest that the model derived value may be uncertain. We address this 457 

uncertainty by varying ΔSSTSL from 0 to 0.64.  458 

 Lower ECS2xC (below 1.5 K) is favored in the absence of the sea level correction, whereas 459 

higher ECS2xC (2 to 3 K) is favored by a larger SST correction. 460 

 461 

 462 

 We have performed additional model experiments with the fully coupled ocean-463 

atmosphere general circulation model OSUVic at T42 resolution as described in [Schmittner et 464 

al., 2011]. For these experiments we used PMIP3 boundary conditions for ice sheets and 465 

atmospheric CO2 and use present day sea level in one experiment and 120 m lower sea level in 466 

the other. The differences between these two models therefore quantify the effect of the sea level 467 

lowering on SSTs. Because the model is computationally expensive it was integrated only for 468 

240 years. Global mean sea surface temperature difference between the two simulations is 0.3 K 469 

between model years 200 and 240. Global marine surface air temperatures are ΔSATSL = 0.46 K 470 
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warmer. 471 

 472 

Inspection of the spatial distribution shows that over 72% of the surface ocean SSTs are 473 

between 0.22 and 0.42 K warmer in the simulation with lower sea level, mainly between 40°S 474 

and 40°N. At higher latitudes in the North Atlantic and North Pacific the differences are larger 475 

and over the Southern Ocean high latitudes and the Arctic they are smaller. These independent 476 

results confirm our best estimate of 0.32 K for the global SST sea level correction.  477 

 478 

7.5  North Atlantic Data 479 

The North Atlantic region where the effects of an AMOC collapse in the model (Fig. S6) are 480 

strongest is excluded from the analysis, as described in the Data-Model Comparison section 5.  481 

This favors lower ECS2xC between 1 and 2 K. Inspection of frequency distributions of 482 

temperature anomalies, analogous to Fig. S9 but excluding the North Atlantic region, shows that 483 

the main peaks increase for the observations and all models, while cold temperature anomalies 484 

(below 3 K for the observations and below −2 K, −3.5 K, and −4.5 K for models with ECS2xC 485 

equal to 2 K, 3 K, and 4 K, respectively) become less abundant, and the secondary maximum 486 

around −3.5 K for model ECS2xC=2 disappears. This way the temperature distributions at low 487 

low ECS2xC change from bimodal to unimodal and become more similar to the observed 488 

distribution when the North Atlantic region is excluded from the comparison, whereas at high 489 

ECS2xC the temperature distributions, without this bimodality, are relatively unchanged in shape.  490 

We speculate that this causes lower ECS2xC values to receive higher probability weights in the 491 

Bayesian analysis. This sensitivity test indicates that North Atlantic cooling is an influential 492 
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constraint, favoring higher ECS2xC values. It demonstrates that excluding regions can lead to a 493 

biased ECS2xC estimate, a result that emphasizes the importance of good spatial data coverage. 494 

 495 

7.6  Statistical Assumptions 496 

Bias: Four experiments assume nonzero bias over land or ocean of ±0.5 K.  The ocean bias has a 497 

particularly strong influence, altering the ECS2xC estimate by about 1 K.  The influence of ocean 498 

bias is larger than the influence of land bias, due to the ocean data’s overall influence on the 499 

inference. 500 

 501 

Nugget Variance: The assumed nugget error of 2.5 K over land and 0.5 K over ocean is changed 502 

to zero over land and ocean (no nugget), or to 3.5 K over land or 1.5 K over ocean (large 503 

nugget).  Eliminating the nugget implies a larger ECS2xC but produces an extremely narrow 504 

uncertainty range, suggesting a mis-specified statistical model.  Increasing the nugget eliminates 505 

ECS2xC below 2 K but otherwise leaves the posterior unchanged. 506 

 507 

Spatial correlation:  The assumed correlation length scale of 2000 km is changed to 1000 km or 508 

5000 km.  The long correlation length eliminates ECS2xC below 2 K; the short correlation length 509 

favors low ECS2xC near 1 K. 510 

 511 

Observation error:  This sensitivity test explores the role of error specification, in particular the 512 

influence of model error and spatial auto-correlation. Here the analysis is repeated neglecting 513 
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spatial correlation and model error and assuming only spatially independent observation errors.  514 

This gives a very narrow ECS2xC distribution peaked near 3.4 K.  The extreme sharpness of the 515 

distribution indicates a mis-specification of the statistical model (i.e., it is overconfident due to 516 

neglecting model error and spatial dependence). 517 

 518 

Spatial error:  The analysis is performed assuming only spatially correlated errors (land and 519 

ocean variances are estimated from the residuals as in the default analysis), neglecting 520 

observation error and the nugget error.  This gives a sharp ECS2xC mode near 3 K, although with 521 

some probability down to 1 K.  The sharp peak also suggests mis-specification (i.e., observation 522 

and nugget errors are important). 523 

 524 

Heavy tailed likelihood:  To explore the possibility of non-normally distributed errors, a 525 

multivariate Student-t likelihood is used in place of the multivariate normal likelihood.  This 526 

distribution has 3 degrees of freedom and has a covariance equal to the covariance assumed in 527 

the multivariate normal analysis.  This slightly favors lower ECS2xC values but otherwise leaves 528 

the ECS distribution unchanged. 529 

 530 

Climate sensitivity prior:  A prior that is uniform on the climate feedback factor F2x/ECS2xC is 531 

used instead of the uniform prior on climate sensitivity.  This prior favors slightly lower ECS2xC 532 

values but leaves the ECS2xC posterior distribution essentially unchanged. 533 

 534 

Outliers excluded:  Some grid cells have reconstructed temperature anomalies that are as many 535 
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as 6 standard deviations away from the (posterior mean) modeled anomalies.  To test the 536 

sensitivity of the inference to the presence of outliers, grid cells with reconstructed anomalies 537 

more than 3 standard deviations away from the ECS2xC = 2.51 K model run are excluded.  This 538 

criterion excludes 8 grid cells, all land cells in North America.  The exclusion of outliers has 539 

negligible effect on the inference. 540 

 541 

7.7 Other Uncertainties 542 

Our study does not provide a complete uncertainty assessment. We have taken into account a 543 

number of known important uncertainties such as dust forcing. Others, however, are not 544 

included, for example uncertainties in the reconstruction of the ice sheets and vegetation cover. 545 

Also our model ensemble does not scan the full parameter space. For example, changes in 546 

shortwave radiation due to clouds are not taken into account. Our statistical method does not 547 

explicitly consider bias due to limited data coverage. 548 

 549 

8. Vegetation Simulation  550 

Our simulations include the influence of climate and atmospheric CO2 concentrations on the 551 

vegetation distribution. Figure S10 shows that the largest changes in simulated vegetation occur 552 

at northern hemisphere high latitudes. The simulated dramatic reduction of the boreal/temperate 553 

forest in the northern hemisphere extra-tropics from 1.8×10-7 km2 to 0.4×10-7 km2 is consistent 554 

with pollen reconstructions and previous offline vegetation modeling [Harrison and Prentice, 555 

2003]. The extent of tropical forest decreases in the model from 2.7×10-7 km2 to 2.4×10-7 km2 is 556 

qualitatively consistent with, but quantitatively much less, than simulated by [Harrison and 557 
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Prentice, 2003] who find reductions of (1.1±0.3)×10-7 km2. Globally the area covered by C3 558 

grass decreases by 10% (from 4.0×10-7 km2 to 3.6×10-7 km2) whereas C4 grass coverage 559 

increases by 20% (from 1.1×10-7 km2 to 1.3×10-7 km2) consistent with the competitive advantage 560 

of C4 photosynthesis under low CO2.  561 

Figures 562 

 563 

Figure S1: Outgoing longwave radiation QPLW at the top-of-the-atmosphere as a function of 564 

surface air temperature Ta. Colored lines show results of the parameterization by Thompson and 565 

Warren (1982) (equation S1) with different slopes and approximately constant Ta at its 566 

preindustrial value of 13°C. Colored numbers denote the ECS2xC of the different model versions. 567 

Symbols show near-surface (2 m) air temperature data from the NCEP reanalysis [Kalnay et al., 568 

1996] and longwave radiation from ERBE satellite measurements [Ramanathan et al., 1989] 569 
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averaged over 10 degree latitudinal bands. 570 

571 
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 571 

Figure S2: Annual mean dust forcing (LGM minus pre-industrial) as a function of longitude and 572 

latitude used as a perturbation to the fluxes at the top-of-the-atmosphere in the UVic model. Top: 573 

shortwave forcing, center: longwave forcing, bottom: total (shortwave plus longwave) forcing. 574 

Negative (blue) values denote a cooling influence, positive (red) a warming. From [Mahowald et 575 

al., 2006b]. 576 
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 577 

Figure S3: Error in the LGM temperature reconstructions as reported in the original publications 578 

[MARGO et al., 2009; Bartlein et al., 2010; Shakun et al., in review]. 579 

 580 
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 581 

Figure S4: Scatterplot of reconstruction error vs. reconstructed temperature anomaly for land 582 

(green) and ocean (blue) data, along with marginal distributions of temperature errors (top) and 583 

temperature anomalies (right). 584 
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 585 

Figure S5. Annual mean snow and ice cover (white) in the LGM experiment with a ECS2xC=8.3 586 

K at different times during the integration. Top: 100 model years after the switch to LGM 587 

boundary conditions, center: 440 years, and bottom: 460 years.  588 

589 
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 589 

Figure S6. Simulated Atlantic Meridional Overturning Circulation (AMOC) at 25°N as a 590 

function of the climate sensitivity. Results from the pre-industrial control simulation are shown 591 

as red crosses, LGM results as black xes and results from LGM experiments with wind stress 592 

from GENMOM as blue squares. 593 

 594 

595 
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 595 

 596 

Figure S7: Zonally averaged surface temperature changes (LGM minus LH) from the best-fitting 597 

model (ECS2xC=2.4 K). Black: surface temperature (SST over the ocean corrected for sea level 598 

lowering by adding 0.3 K, and SAT over land) masked by the grid points that contain 599 

reconstructions. Red: unmasked surface temperature (SST over the ocean and SAT over land). 600 

Green: unmasked SAT. Blue unmasked SST. 601 

602 
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  602 

 603 

Figure S8: Residuals (difference in temperature change between model and reconstructions) 604 

from the best fitting model (ECS2xC = 2.4 K) as a function of longitude and latitude. Top panel 605 

shows residuals everywhere, bottom panel only those grid points where the error is outside the 606 

observational error estimates, which accounts for 25% of the global surface area covered by 607 

observations. 608 
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 609 

Figure S9: Distributions of reconstructed (observed) and modeled LGM-modern temperature 610 

anomalies at selected climate sensitivities, for land and ocean (left), land only (center), and ocean 611 

only (right) grid cells. 612 

613 

-10 -5 0 5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Temperature anomaly (°C)

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

observations

ECS = 2 °C

ECS = 3 °C

ECS = 4 °C

-20 -15 -10 -5 0 5

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

0
.3
0

Temperature anomaly (°C)

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

observations

ECS = 2 °C

ECS = 3 °C

ECS = 4 °C

-6 -4 -2 0 2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Temperature anomaly (°C)

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

observations

ECS = 2 °C

ECS = 3 °C

ECS = 4 °C



 37 

 613 

Figure S10: Residuals at the posterior mean climate sensitivity (2.2 K) for land and ocean (upper 614 

left), land only (upper center), and ocean only (upper right) grid cells, with normal fits (dashed 615 

lines) superimposed.  Also shown are cumulative distribution functions of the residuals (lower 616 

left) and normal Q-Q plots (lower center) with linear fits between the first and third quartiles 617 

(dashed lines). 618 
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 619 

Figure S11: Plot of mean and 90% interval for the reconstructed temperature anomaly (solid and 620 

dashed red lines) and mean and 90% intervals for the modeled temperature anomaly as a 621 

function of ECS2xC for land and ocean (left, black), land only (center, green), and ocean only 622 

(right, blue) grid cells. 623 

 624 

Figure S12: As in Figure S11, but with grid cells in the North Atlantic region omitted. 625 
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 626 

Figure S13: Marginal and pairwise joint posterior distribution of estimated parameters (ECS2xC, 627 

land spatial error, and ocean spatial error), for the default analysis.  The marginal distributions 628 

are given on the diagonal (with priors given by dashed curves), with pairwise scatterplots of 629 

posterior samples given below the diagonal, and pairwise correlations above the diagonals.  All 630 

units are in K. 631 
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 632 

Figure S14: Marginal posterior probability distributions for ECS2xC estimated in each sensitivity 633 

experiment (colored curves) compared to the distribution obtained in the default analysis (thin 634 

black curve), sorted by increasing mean ECS2xC. 635 
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 636 

Figure S15: Mean and median (filled and open circles) ECS2xC values, along with 66% and 90% 637 

intervals (thick and thin lines) for the various sensitivity experiments (as in Figure S14), sorted 638 

by decreasing mean ECS2xC.  The vertical dotted lines are the IPCC range of 2–4.5 K. 639 
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 640 

Figure S16: Simulation of dominant vegetation type for the present day (top) and the LGM 641 

(bottom) in model ECS2xC = 2.6 K. Five different plant functional types are simulated: broadleaf 642 

trees (green), needleleaf trees (blue), C3 grass (brown), C4 grass (orange), and shrub (light green) 643 

in addition to bare soil (yellow). 644 



 43 

 645 

References 646 

 647 

Alder, J. R., S. W. Hostetler, D. Pollard, and A. Schmittner (2011), Evaluation of a present-day 648 
climate simulation with a new coupled atmosphere-ocean model GENMOM, Geosci. 649 
Model Dev., 4(1), 69-83, doi:10.5194/gmd-4-69-2011. 650 

Annan, J. D., and J. C. Hargreaves (2011), On the generation and interpretation of probabilistic 651 
estimates of climate sensitivity, Climatic Change, 104(3-4), 423-436, 10.1007/s10584-652 
009-9715-y. 653 

Arbuszewski, J., P. deMenocal, A. Kaplan, and E. C. Farmer (2010), On the fidelity of shell-654 
derived delta O-18(seawater) estimates, Earth Planet Sc Lett, 300(3-4), 185-196, Doi 655 
10.1016/J.Epsl.2010.10.035. 656 

Bartlein, P., S. Harrison, S. Brewer, S. Connor, B. Davis, K. Gajewski, J. Guiot, T. Harrison-657 
Prentice, A. Henderson, O. Peyron, I. Prentice, M. Scholze, H. Seppä, B. Shuman, S. 658 
Sugita, R. Thompson, A. Viau, J. Williams, and H. Wu (2010), Pollen-based continental 659 
climate reconstructions at 6 and 21 ka: a global synthesis, Clim Dynam, 1-28, 660 
10.1007/s00382-010-0904-1. 661 

Bartlein, P., S. Harrison, S. Brewer, S. Connor, B. Davis, K. Gajewski, J. Guiot, T. Harrison-662 
Prentice, A. Henderson, O. Peyron, I. Prentice, M. Scholze, H. Seppä, B. Shuman, S. 663 
Sugita, R. Thompson, A. Viau, J. Williams, and H. Wu (2011), Pollen-based continental 664 
climate reconstructions at 6 and 21 ka: a global synthesis, Clim Dynam, 37, 775-802, 665 
10.1007/s00382-010-0904-1. 666 

Broccoli, A. J. (2000), Tropical cooling at the last glacial maximum: An atmosphere-mixed layer 667 
ocean model simulation, J Climate, 13(5), 951-976. 668 

Curry, W. B., and D. W. Oppo (2005), Glacial water mass geometry and the distribution of delta 669 
C-13 of Sigma CO2 in the western Atlantic Ocean, Paleoceanography, 20(1), -. 670 

EPICA, c. m., L. Augustin, C. Barbante, P. R. F. Barnes, J. M. Barnola, M. Bigler, E. Castellano, 671 
O. Cattani, J. Chappellaz, D. DahlJensen, B. Delmonte, G. Dreyfus, G. Durand, S. 672 
Falourd, H. Fischer, J. Fluckiger, M. E. Hansson, P. Huybrechts, R. Jugie, S. J. Johnsen, 673 
J. Jouzel, P. Kaufmann, J. Kipfstuhl, F. Lambert, V. Y. Lipenkov, G. V. C. Littot, A. 674 
Longinelli, R. Lorrain, V. Maggi, V. Masson-Delmotte, H. Miller, R. Mulvaney, J. 675 
Oerlemans, H. Oerter, G. Orombelli, F. Parrenin, D. A. Peel, J. R. Petit, D. Raynaud, C. 676 
Ritz, U. Ruth, J. Schwander, U. Siegenthaler, R. Souchez, B. Stauffer, J. P. Steffensen, B. 677 
Stenni, T. F. Stocker, I. E. Tabacco, R. Udisti, R. S. W. van de Wal, M. van den Broeke, 678 
J. Weiss, F. Wilhelms, J. G. Winther, E. W. Wolff, and M. Zucchelli (2004), Eight glacial 679 
cycles from an Antarctic ice core, Nature, 429(6992), 623-628, Doi 680 
10.1038/Nature02599. 681 

Flückiger, J., A. Dallenbach, T. Blunier, B. Stauffer, T. F. Stocker, D. Raynaud, and J. M. 682 



 44 

Barnola (1999), Variations in atmospheric N2O concentration during abrupt climatic 683 
changes, Science, 285(5425), 227-230. 684 

Frame, D. J., B. B. B. Booth, J. A. Kettleborough, D. A. Stainforth, J. M. Gregory, M. Collins, 685 
and M. R. Allen (2005), Constraining climate forecasts: The role of prior assumptions, 686 
Geophys Res Lett, 32(9), L09702, doi:10.1029/2004gl022241. 687 

Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner (1984), 688 
Climate sensitivity: Analysis of feedback mechanisms, in Climate Processes and Climate 689 
Sensitivity, edited by J. E. Hansen and T. Takahashi, pp. 130-163, American Geophysical 690 
Union. 691 

Harrison, S. P., and I. C. Prentice (2003), Climate and CO2 controls on global vegetation 692 
distribution at the last glacial maximum: analysis based on palaeovegetation data, biome 693 
modelling and palaeoclimate simulations, Global Change Biol, 9(7), 983-1004. 694 

Hewitt, C. D., and J. F. B. Mitchell (1997), Radiative forcing and response of a GCM to ice age 695 
boundary conditions: cloud feedback and climate sensitivity, Clim Dynam, 13(11), 821-696 
834. 697 

Jun, M., and M. L. Stein (2007), An approach to producing space - Time covariance functions on 698 
spheres, Technometrics, 49(4), 468-479, 10.1198/004017007000000155. 699 

Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. 700 
White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. 701 
Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph (1996), 702 
The NCEP/NCAR 40-year reanalysis project, B Am Meteorol Soc, 77(3), 437-471. 703 

Knutti, R., and G. C. Hegerl (2008), The equilibrium sensitivity of the Earth's temperature to 704 
radiation changes, Nat Geosci, 1(11), 735-743. 705 

Köhler, P., R. Bintanja, H. Fischer, F. Joos, R. Knutti, G. Lohmann, and V. Masson-Delmotte 706 
(2010), What caused Earth's temperature variations during the last 800,000 years? Data-707 
based evidence on radiative forcing and constraints on climate sensitivity, Quaternary Sci 708 
Rev, 29(1-2), 129-145, Doi 10.1016/J.Quascirev.2009.09.026. 709 

Mahowald, N. M., D. R. Muhs, S. Levis, P. J. Rasch, M. Yoshioka, C. S. Zender, and C. Luo 710 
(2006a), Change in atmospheric mineral aerosols in response to climate: Last glacial 711 
period, preindustrial, modern, and doubled carbon dioxide climates, Journal of 712 
Geophysical Research-Atmospheres, 111(D10), D10202, doi:10.1029/2005jd006653. 713 

Mahowald, N. M., M. Yoshioka, W. D. Collins, A. J. Conley, D. W. Fillmore, and D. B. 714 
Coleman (2006b), Climate response and radiative forcing from mineral aerosols during 715 
the last glacial maximum, pre-industrial, current and doubled-carbon dioxide climates, 716 
Geophys Res Lett, 33, L20705, 10.1029/2006GL026126. 717 

MARGO, C. Waelbroeck, A. Paul, M. Kucera, A. Rosell-Melee, M. Weinelt, R. Schneider, A. C. 718 
Mix, A. Abelmann, L. Armand, E. Bard, S. Barker, T. T. Barrows, H. Benway, I. Cacho, 719 
M. T. Chen, E. Cortijo, X. Crosta, A. de Vernal, T. Dokken, J. Duprat, H. Elderfield, F. 720 
Eynaud, R. Gersonde, A. Hayes, M. Henry, C. Hillaire-Marcel, C. C. Huang, E. Jansen, 721 
S. Juggins, N. Kallel, T. Kiefer, M. Kienast, L. Labeyrie, H. Leclaire, L. Londeix, S. 722 
Mangin, J. Matthiessen, F. Marret, M. Meland, A. E. Morey, S. Mulitza, U. Pflaumann, 723 



 45 

N. G. Pisias, T. Radi, A. Rochon, E. J. Rohling, L. Sbaffi, C. Schafer-Neth, S. Solignac, 724 
H. Spero, K. Tachikawa, and J. L. Turon (2009), Constraints on the magnitude and 725 
patterns of ocean cooling at the Last Glacial Maximum, Nat Geosci, 2(2), 127-132, Doi 726 
10.1038/Ngeo411. 727 

Mathien-Blard, E., and F. Bassinot (2009), Salinity bias on the foraminifera Mg/Ca 728 
thermometry: Correction procedure and implications for past ocean hydrographic 729 
reconstructions, Geochem Geophy Geosy, 10, Q12011, Doi 10.1029/2008gc002353. 730 

Oliver, D. S. (2003), Gaussian cosimulation: Modelling of the cross-covariance, Mathematical 731 
Geology, 35(6), 681-698. 732 

Peltier, W. R. (2004), Global Glacial Isostasy and the Surface of the Ice-Age Earth: The ICE-5G 733 
(VM2) Model and GRACE, Annual Review of Planetary Sciences, 32, 111-149, 734 
10.1146/annurev.earth.32.082503.144359. 735 

Perlwitz, J., I. Tegen, and R. L. Miller (2001), Interactive soil dust aerosol model in the GISS 736 
GCM 1. Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols, 737 
Journal of Geophysical Research-Atmospheres, 106(D16), 18167-18192. 738 

Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. 739 
Hartmann (1989), Cloud-Radiative Forcing and Climate - Results from the Earth 740 
Radiation Budget Experiment, Science, 243(4887), 57-63. 741 

Ramaswamy, V., O. Boucher, J. Haigh, D. Hauglustaine, J. Haywood, G. Myhre, T. Nakajima, 742 
G. Y. Shi, and S. Solomon (2001), Radiative Forcing of Climate Change, in Climate 743 
Change 2001: The Scientific Basis. Contribution of Working Group I to the Third 744 
Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. 745 
Houghton, et al., p. 881, Cambridge University Press, Cambridge, United Kingdom, New 746 
York, NY, USA. 747 

Roberts, G. O., and J. S. Rosenthal (2009), Examples of Adaptive MCMC, Journal of 748 
Computational and Graphical Statistics, 18(2), 349-367, 10.1198/jcgs.2009.06134. 749 

Saenko, O. A., A. Schmittner, and A. J. Weaver (2004), The Atlantic-Pacific seesaw, J Climate, 750 
17(11), 2033-2038. 751 

Schmittner, A., A. Oschlies, H. D. Matthews, and E. D. Galbraith (2008), Future changes in 752 
climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a 753 
business-as-usual CO2 emission scenario until year 4000 AD, Global Biogeochem Cy, 754 
22(1), GB1013, Doi 10.1029/2007gb002953. 755 

Schmittner, A., T. A. Silva, K. Fraedrich, E. Kirk, and F. Lunkeit (2011), Effects of mountains 756 
and ice sheets on global ocean circulation, J Climate, 24, 2814-2829, 757 
doi:10.1175/2010JCLI3982.1. 758 

Shakun, J. D., P. U. Clark, F. He, Z. Liu, B. Otto-Bliesner, S. A. Marcott, A. C. Mix, A. 759 
Schmittner, and E. Bard (2011), Influence of CO2 and ocean circulation on global 760 
climate during the last deglaciation, Nature, in review. 761 

Shakun, J. D., P. U. Clark, F. He, Z. Liu, B. Otto-Bliesner, S. A. Marcott, A. C. Mix, A. 762 
Schmittner, and E. Bard (in review), CO2 forcing of climate during the last deglaciation. 763 

Sokolik, I. N., and O. B. Toon (1999), Incorporation of mineralogical composition into models 764 



 46 

of the radiative properties of mineral aerosol from UV to IR wavelengths, Journal of 765 
Geophysical Research-Atmospheres, 104(D8), 9423-9444. 766 

Taylor, K. E., M. Crucifix, P. Braconnot, C. D. Hewitt, C. Doutriaux, A. J. Broccoli, J. F. B. 767 
Mitchell, and M. J. Webb (2007), Estimating shortwave radiative forcing and response in 768 
climate models, J Climate, 20(11), 2530-2543, Doi 10.1175/Jcli4143.1. 769 

Weaver, A. J., M. Eby, E. C. Wiebe, C. M. Bitz, P. B. Duffy, T. L. Ewen, A. F. Fanning, M. M. 770 
Holland, A. MacFadyen, H. D. Matthews, K. J. Meissner, O. Saenko, A. Schmittner, H. 771 
X. Wang, and M. Yoshimori (2001), The UVic Earth System Climate Model: Model 772 
description, climatology, and applications to past, present and future climates, Atmos 773 
Ocean, 39(4), 361-428. 774 

Yoshioka, M., N. M. Mahowald, A. J. Conley, W. D. Collins, D. W. Fillmore, C. S. Zender, and 775 
D. B. Coleman (2007), Impact of desert dust radiative forcing on Sahel precipitation: 776 
Relative importance of dust compared to sea surface temperature variations, vegetation 777 
changes, and greenhouse gas warming, J Climate, 20(8), 1445-1467, Doi 778 
10.1175/Jcli4056.1. 779 

 780 
 781 


